Декабрь 2019

Designed by:
SiteGround web hosting Joomla Templates

Статьи (Англ.)

Physical processes modern investigation methods in power-intensive industrial equipments
dokeng.pdf (1.78 MB)
Panov E.N., Karvatsky A.Ya, Shilovich I.L., Vasil'chenko g.N., Shilovich T.B., Leleka S.V., Danilenko S.V., Bil'ko V.V., Pulinets I.V., Chyzh A.N.
Development of thermal regime control for crucibleless AHP method
art_4.pdf (379.99 kB)
V. I. Deshko, V. D. Golyshev, A. Ya. Karvatskii, Yu. V. Lokhmanets
Functional Materials. — 2008. — 15, No. 1. — Р. 90—96.


The results of control possibility investigations for crucibleless AHP crystal grows method are considered. Numerical studies have been carried out basing on a specially designed global heat exchange model.The control methods based on radiation flux variation and circular gap in the lateral thermal insulation against the melt surface have been found to change substantially the temperature fields and thermal fluxes at crystallization front due to the variations of radiation fluxes to the environment/ The effect of the diaphragm height location and of diaphragm and surrounding constructions thermal-physical properties on the crystallization front shape have been considered.

Control of radiation-conductive heat exchange at crystal growth from melt
art_5.pdf (466.74 kB)
V. I. Deshko, V. D. Golyshev, A. Ya. Karvatskii, Yu. V. Lokhmanets
Functional Materials. — 2008. — 15, No. 1. — Р. 90—96.


The influence of radiation exchange in a crystal-melt system for different (from the point of view of optical properties) material classes and crystal growing methods (at constant crystal-melt system thickness and at a constant melt thickness) is considered. The general approach is based on using of modified numerical one-dimensional crystallization model at radiation-conductive heat exchange. The radiation heat transfer in a crystal-melt system provides conditions for faster front movement. In this case, most favorable conditions with large temperature gradients are created in system with transparent crystal and opaque melt. At simultaneous crystal and melt “transparency” the temperature gradients in melt may decrease and cause stability loss of the directed crystallization.

Experimental and numerical analysis of coupled interfacial kinetics and heat transport during the axial heat flux close to the phase interface growth of BGO single crystals
art_1.pdf (494.77 kB)
S. V. Bykova, V. D. Golyshev, M. A. Gonik, V. B. Tsvetovsky, V. I. Deshko, A. Ya. Karvatskii, A. V. Lenkin, S. Brandon, O. Weinstein, A. Virozub, J. J. Derby, A. Yeckel, P. Sonda
J. of Crystal Growth. — 2004. — Vol. 266, Issues 1—3. — P. 246—256.


Combined experimental and numerical tools are used to analyze the effect of convective and radiative heat transport, faceting phenomena, and the optical thickness of the Bi4Ge3O12 (BGO) crystal on the measurement and calculation of melt/crystal interface kinetics during the axial heat flux close to the phase interface growth of BGO single crystals. Results show that, in the general case, accurate determination of growth kinetic relations requires the application of models which account for all of the above phenomena (radiative and convective heat transport, faceting phenomena, etc.). Failure to take these into account may result not only in quantitative errors, but also even in qualitatively wrong determination of interfacial kinetic mechanisms.

Efficiency analysis of the use of highly graphitized Bottom blocks in 156 – 160 kA aluminum electrolyzers
art_2.pdf (349.16 kB)
O. Yu. Urazlina, V. I. Churilin, E. N. Panov, G. N. Vasil’chenko and A. Ya. Karvatskii
Refractories and Industrial Ceramics. — 2005. — Vol. 46, No. 2. — P. 93—97.


A comprehensive efficiency analysis of the energy consumption is carried out for two types of aluminum electrolyzers using graphitized bottom blocks available from the Ukrainian Graphite JSC. The use of bottom blocks high in graphite (50 and 70%) leads to economic consumption of electric power, increased output, and extended service life of the electrolyzers.

Показывать # 
<< Первая < Предыдущая 1 2 Следующая > Последняя >>
Страница 1 из 2


  • United Сompany RUSAL
    United Сompany RUSAL
  • Братский алюминиевый завод (РУСАЛ Братск)
    Братский алюминиевый завод (РУСАЛ Братск)
  • Волгоградский алюминиевый завод (ВгАЗ)
    Волгоградский алюминиевый завод (ВгАЗ)
  • Запорожский производственный алюминиевый комбинат (ЗАлК)
    Запорожский производственный алюминиевый комбинат (ЗАлК)
  • Иркутский алюминиевый завод (ИркАЗ)
    Иркутский алюминиевый завод (ИркАЗ)
  • Кандалакшский алюминиевый завод (КАЗ)
    Кандалакшский алюминиевый завод (КАЗ)
  • Красноярский алюминиевый завод (РУСАЛ Красноярск)
    Красноярский алюминиевый завод (РУСАЛ Красноярск)
  • Саяногорский алюминиевый завод (РУСАЛ Саяногорск)
    Саяногорский алюминиевый завод (РУСАЛ Саяногорск)
  • Хакасский алюминиевый завод (ХАЗ)
    Хакасский алюминиевый завод (ХАЗ)
  • Инженерно-технологический центр РУСАЛ
    Инженерно-технологический центр РУСАЛ
  • Всероссийский алюминиево-магниевый институт (РУСАЛ ВАМИ)
    Всероссийский алюминиево-магниевый институт (РУСАЛ ВАМИ)
  • ОАО
    ОАО "СибВАМИ"
  • ООО
    ООО "Алкорус Инжиниринг"
  • ОАО “Укрграфит”
    ОАО “Укрграфит”
  • ЗАО
    ЗАО "Новосибирский электродный завод"
  • ОАО
    ОАО "Новочеркасский электродный завод"
  • ОАО
    ОАО "Киевский картонно-бумажный комбинат"

Copyright umaxx

Сейчас 19 гостей онлайн